Changes in nutrients and decay rate of Ginkgo biloba leaf litter exposed to elevated O3 concentration in urban area
نویسندگان
چکیده
Ground-level ozone (O3) pollution has been widely concerned in the world, particularly in the cities of Asia, including China. Elevated O3 concentrations have potentially influenced growth and nutrient cycling of trees in urban forest. The decomposition characteristics of urban tree litters under O3 exposure are still poorly known. Ginkgo biloba is commonly planted in the cities of northern China and is one of the main tree species in the urban forest of Shenyang, where concentrations of ground-level O3 are very high in summer. Here, we hypothesized that O3 exposure at high concentrations would alter the decomposition rate of urban tree litter. In open-top chambers (OTCs), 5-year-old G. biloba saplings were planted to investigate the impact of elevated O3 concentration (120 ppb) on changes in nutrient contents and decomposition rate of leaf litters. The results showed that elevated O3 concentration significantly increased K content (6.31 ± 0.29 vs 17.93 ± 0.40, P < 0.01) in leaves of G. biloba, significantly decreased the contents of total phenols (2.82 ± 0.93 vs 1.60 ± 0.44, P < 0.05) and soluble sugars (86.51 ± 19.57 vs 53.76 ± 2.40, P < 0.05), but did not significantly alter the contents of C, N, P, lignin and condensed tannins, compared with that in ambient air. Furthermore, percent mass remaining in litterbags after 150 days under ambient air and elevated O3 concentration was 56.0% and 52.8%, respectively. No significant difference between treatments was observed in mass remaining at any sampling date during decomposition. The losses of the nutrients in leaf litters of G. biloba showed significant seasonal differences regardless of O3 treatment. However, we found that elevated O3 concentration slowed down the leaf litter decomposition only at the early decomposition stage, but slightly accelerated the litter decomposition at the late stage (after 120 days). This study provides our understanding of the ecological processes regulating biogeochemical cycles from deciduous tree species in high-O3 urban area.
منابع مشابه
Effect of Ginkgo biloba Leaf Extract (EGb 761) on Changes in Haematological Parameters and Erythrocyte Osmotic Fragility in Hypotonic and Chlorpyrifos Exposed Rats
BACKGROUND: Canine low-dose sepsis model provides a reliable setting to study innovative drugs. Lipopolysaccharides (LPS), a major constituent of bacterial outer membrane, have been demonstrated to play a critical role in the initiation of pathogenesis. Lipopolysaccharide-induced sepsis has been extensively studied in laboratory animals; but its importance has mainly remained unknown in dogs. ...
متن کاملEuropean aspen and hybrid aspen under changing environment : Leaf traits, growth and litter decomposition
Understanding the responses of species and ecosystems to human-induced global environmental change has become a high research priority. The main aim of this thesis was to investigate how certain environmental factors that relate to global change affect European aspen (Populus tremula), a keystone species in boreal forests, and hybrid aspen (P. tremula × P. tremuloides), cultivated in commercial...
متن کامل31-36-Wei Zhang - Shouxin
Ginkgo biloba leaf is the leaf of Ginkgo biloba L. in the genus Ginkgo of family Ginkgoaceae. It has the actions of benefiting heart, astringing lung, resolving dampness and stopping diarrhea, which can be used in the treatment of chest distress and pain, palpitation, phlegm panting and cough, diarrhea, dysentery, leucorrhea and other symptoms. Main active constituents of Ginkgo biloba leaves a...
متن کاملHow does elevated CO2 or ozone affect the leaf-area index of soybean when applied independently?
Changes in leaf-area index (LAI) may alter ecosystem productivity in elevated [CO2] or [O3]. By increasing the apparent quantum yield of photosynthesis (phi(c,max)), elevated [CO2] may increase maximum LAI. However, [O3] when elevated independently accelerates senescence and may reduce LAI. Large plots (20 m diameter) of soybean (Glycine max) were exposed to ambient (approx. 370 micromol mol(-1...
متن کاملEffects of elevated concentrations of atmospheric CO2 and tropospheric O3 on leaf litter production and chemistry in trembling aspen and paper birch communities.
Human activities are increasing the concentrations of atmospheric carbon dioxide ([CO2]) and tropospheric ozone ([O3]), potentially leading to changes in the quantity and chemical quality of leaf litter inputs to forest soils. Because the quality and quantity of labile and recalcitrant carbon (C) compounds influence forest productivity through changes in soil organic matter content, characteriz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2018